

1

Implementation of (O-)CGR in The ONE

A. Berlati°, S. Burleigh§, C. Caini°, F. Fiorini, J. J. Messina°, S. Pozza, M. Rodolfi°, G. Tempesta°
§NASA -Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA, USA

°DEI/ARCES, University of Bologna, Italy
Alessandro.berlati@studio.unibo.it scott.burleigh@jpl.nasa.gov, carlo.caini@unibo.it, federico.fiorini3@studio.unibo.it,

jakojo.messina@studio.unibo.it, simone.pozza@studio.unibo.it, michirod@gmail.com, giuseppe.tempesta2@studio.unibo.it

Abstract— Routing in Delay-/Disruption-Tolerant Networking

(DTN) requires specific solutions as link impairments prevent the

use of ordinary Internet algorithms, based on a timely

dissemination of network topology information. Among DTN

routing algorithms there is a dichotomy between opportunistic

and deterministic (scheduled) solutions. The former are numerous

and apply to terrestrial environments; CGR is the most widely

supported algorithm designed for scheduled connectivity, and it is

usually applied to space networks. However, in an attempt to

provide a unified approach, an opportunistic variant of CGR,

Opportunistic CGR (OCGR) has been recently proposed by some

of the authors. Performance evaluations are normally carried out

for opportunistic solutions by means of simulators, such as The

ONE considered in this paper. CGR by contrast is more often

studied by means of small testbeds. As the simulation approach

could be complementary for CGR, and essential for OCGR, the

authors have recently ported both of them into The ONE, by

developing and releasing as free software a specific additional

package. The aim of this paper is to show the rationale of this

choice and discuss the many challenges that needed to be tackled

to achieve this primary goal.

Keywords-component; Routing, Delay-/Disruption- Tolerant

Networking, The ONE, CGR, Space Networks.

I. INTRODUCTION

The Delay- and Disruption-Tolerant Networking
architecture has been designed to allow communications in those
scenarios where the ordinary TCP/IP architecture cannot
provide satisfactory performance, because one or more of the
fundamental assumptions on which the Internet architecture is
based are not met. These assumptions are: short RTTs,
availability of at least one end-to-end path, channel symmetry,
low error rates [1], [2]. Networks where at least one of these
conditions are not met are sometimes called “challenged”; this
category includes space networks (both satellite and
interplanetary), Mobile Ad-Hoc Networks (MANETs),
emergency networks, sensor networks, military and underwater
networks. The aim of the DTN architecture based on the
introduction of the Bundle protocol [3] layer between
Application and lower layers is to offer a common general
solution instead of a variety of specific solutions limited in scope
[2], [4]. DTN standardization started in IRTF and is now carried
on in IETF [5]; CCSDS standardization for space applications
works in parallel.

Routing in DTN networks has always been a challenging
research topic [6], because channel impairments in DTN prevent
the use of Internet routing algorithms based on an up-to-date
comprehensive knowledge of network topology. To this end, it
must be specified that DTN networks are highly heterogeneous
and can be split into two main classes. Space networks are

characterized by scheduled intermittent connectivity: contacts
between nodes are deterministic and are known a priori, as they
derive from the motion of space assets and planets. By contrast,
most terrestrial DTNs are characterized by random intermittent
connectivity, as contacts are opportunistic because they typically
arise from casual encounters. Given this assumption, totally
different routing algorithms have historically been studied for
the two environments. DTN routing algorithms fall into two
main categories: opportunistic, where the status information is
totally or partially unknown, and deterministic, which are
assumed to have a perfect knowledge of the network. Contact
Graph Routing (CGR) [7] is the most widely supported
algorithm designed to cope with deterministic scheduled
connectivity, while for opportunistic networks there are many
proposed approaches that usually employ a flooding-based
strategy with some form of control dependent on their algorithm.
Among the many opportunistic proposals (see [8] for a survey)
the most important are: Epidemic routing [9] , ProPHET [10],
Spray – and – Wait [11], RAPID [12], MaxProp [13]. An
opportunistic version of CGR, called Opportunistic CGR
(OCGR) has also been designed as an attempt to provide a
unified approach, but it is still in an evolutionary phase [14].

Opportunistic algorithms are generally studied by means of
DTN simulators, such as The ONE (Opportunistic Networking
Environment) simulator considered in this paper, which is the
most widely adopted and was designed to allow direct
comparisons among the many opportunistic proposals, the most
important of which are already included in the package [15].
These simulators are generally based on random motion of
nodes to establish contacts and have been conceived to simulate
many nodes, as statistics must be derived. By contrast,
deterministic routing, i.e. CGR, has generally been studied by
means of small testbeds, involving a limited number of nodes,
as it was of primary interest to study the ability of the algorithm
to cope with particular challenges (see [16] for an interesting
exception). The advantage of these testbeds running on real or
virtual machines is that the full protocol stack is involved and
that channel emulators can be inserted between nodes to add any
kind of link impairments; the disadvantage is that only a limited
number of nodes can be involved. That said, the authors believe
that the simulation approach can effectively complement the use
of small scale testbeds for CGR, in particular to study the
scalability of the algorithm, for which of course a high number
of nodes would be necessary. Moreover, OCGR obviously
requires an opportunistic environment for performance
evaluation. Therefore, it was decided to port (O-)CGR into The
ONE, in an attempt to have a unified platform for DTN routing
evaluations. The challenges to face and the results of this study
are described in this paper. If accepted, a demo will be presented
at the conference.

2

II. CGR AND OCGR

A. CGR

CGR is a dynamic algorithm that computes routes based on
the “contact plan,” a time-ordered list of scheduled transmission
opportunities, i.e. “contacts”. Each contact entry is defined by a
start and a stop time, and by a nominal transmission speed; as
channels in space are often asymmetric, two entries with
possibly different transmission speeds are usually present for
each contact. Each node uses the contacts in the contact plan to
build a “routing table” data structure. It is worth stressing that
by contrast to Internet algorithms, routes do not need to be
continuous. Each segment of the path from source to destination
is an opportunity to send data from node X to node Y; once a
bundle has reached node Y if the link to node Z is temporarily
closed the bundle may be kept in storage, awaiting the start of
the next contact. Each route is also associated to a forfeit time,
i.e. the latest time by which the bundle must be forwarded to the
route’s entry node in order to have any chance of traversing the
route itself.

As routes are known in advance, route computation is
performed as soon as a bundle is passed to the bundle protocols
by upper layers, i.e. when it is generated on the source node, or
when it arrives at intermediate nodes. As a result, the bundle is
inserted in a queue towards the first node of the selected path.
By contrast to opportunistic algorithms, bundles are forwarded,
i.e. no additional copies are created, except in the case of
“critical” bundles, for which multiple copies can be created to
maximize the chances of success and minimize the delivery
time. Routes are recomputed whenever the contact plan is
updated.

CGR is naturally more complex than most opportunistic
algorithms and has undergone many modifications [7], [17] and
at present it is under standardization by CCSDS, relabeled as
Scheduled Aware Bundle Routing [18]. Among the latest
enhancements introduced in the ION implementation [19] used
in this work are the computed “earliest transmission
opportunity” (ETO), to take into account the delay due to
bundles already enqueued (currently on the first hop only), and
Overbooking Management, to efficiently manage the contact
oversubscription that can derive from the forwarding of high
priority bundles whenever the selected contact had previously
been allocated to lower priority bundles [20].

B. OCGR

Opportunistic Contact Graph Routing is an extension to
CGR aimed at enlarging its applicability from deterministic
space networks to opportunistic terrestrial networks. To this end,
the contact plan has been extended to add discovered and
predicted contacts in addition to scheduled ones. These contacts
have different level of “confidence” (a sort of likelihood of
happening). In brief we have:

 Scheduled contacts; these are known a priori and have
confidence 1.

 Discovered contacts; these opportunistic contacts are
added to the contact plan on the spot, when they happen.
Upon termination, their start and stop times, as well as their
volumes (the product of the contact length with the
transmission speed) are saved. They have confidence 1.

 Predicted contacts; these are calculated on the basis of
discovered contacts, to take advantage of history of
previous encounters (in the hope that they are not
completely random but follow predictable patterns); their
level of confidence is less than 1.

For any newly discovered contact, the communicating nodes
exchange all contact log entries, then discard all previously
computed predicted contacts and use the updated contact history
to compute new predicted contacts. Routing is performed on the
basis of the updated contact plan in the usual way, except that
the confidence in the resulting forwarding decisions is less than
total if the selected path includes predicted contacts. If the level
of confidence is less than a given threshold, OCGR sends
multiple copies of the bundles, thus extending the mechanism
previously limited in CGR to “critical bundles”. Note that
OCGR is still a work in progress, and all elements of the design
remain open to discussion and revision [14].

III. THE ONE

The ONE is a Java based simulator designed to test and
compare opportunistic routing algorithms [15]. It was developed
at Aalto University who now maintain it together with
Technische Universität München (Connected Mobility). It is
released under GPLv3 and the latest version (at present v1.6.0)
can be downloaded from [21]. Its main characteristics and
features, knowledge of which is necessary to understand CGR
integration, are reported below.

A. Node movement, contacts and routing

The simulation environment is based on node movements,
which can follow different random models or be derived from
real traces. Nodes have one or multiple radio interfaces, with
associated ranges and transmission speeds. Contacts are
opportunistic and derive from the movement of nodes: a contact
start when two nodes with a common radio interface become
close enough, and stops when they go out of range. During a
contact, bundles (but in The ONE the more generic term
“messages” is used) are exchanged between nodes at the speed
associated to the interface, following the rules dictated by the
routing protocol adopted. Messages are generated at random
intervals by message generators (several options available)
which can be activated on specific subsets of nodes, which can
also be destinations, while other nodes act only as relays.

B. Visual interface and logs

The ONE visual interface serves two aims. First, it allows
the user to fine-tune the running simulation, not only by means
of the start/stop/pause commands, but also by setting specific
conditions that pause the simulation when met. Second, it allows
the user to follow the node movement and the data exchanged.
Once paused, the user can inspect the situation at a given
moment (e.g. which messages are exchanged or buffered). When
intensive simulations are needed, The ONE can run in “batch”
mode, i.e. without the graphic interface, making the simulation
faster. The ONE can produce a wide variety of reports, as well
as general statistics, such as the percentage of messages
delivered, relayed, etc.

http://www.cm.in.tum.de/index.php?id=5

3

C. Settings

The ONE simulations are based on the parameters contained
in one or more settings files. The basic rule is that general
settings are given in the “default_settings.txt” file, then these
settings can be overridden or augmented by additional files.
This method proves both effective and convenient. As The
ONE is very flexible, many parameters must be set; thus it is
preferable to work differentially, by changing only a few
parameters at a time, which can easily be done by this
mechanism.

D. Routing algorithms

From the Java class “Active router” derive the classes
implementing the opportunistic routing protocols in The ONE
(see the “routing” directory of The ONE package).

IV. CGR IMPLEMENTATION

The CGR implementation in The ONE has two primary
aims: to allow the user to test CGR scalability, by running CGR
on networks consisting of many nodes, and to facilitate the
Opportunistic version development, by allowing direct
performance comparisons with the best opportunistic routing
protocols. To keep the code as modular as possible, we tried hard
not to modify the current code of ONE, unless strictly necessary,
and instead add new classes whenever possible. Most
importantly, we decided to avoid any duplication of the CGR
code, by transplanting it verbatim from ION into The ONE
instead of writing a new implementation. The rationale of this
was to avoid any inconsistency and facilitate future updates.

In implementing CGR into The ONE we had to tackle
various challenges, notably:

 The ONE is written in Java but CGR in C. We used JNI
(Java Native Interface) to link CGR C code to the new
CGR routing classes in Java, a major task.

 CGR algorithm is contained in a single file “libcgr.c” in
ION. The code, however, is interfaced with many routines
and structures present in the ION environment but not in
The ONE. It was therefore necessary to build a sort of ION
emulation environment within The ONE, to avoid
modifying the CGR code.

 While priorities have been considered in RFC4838 (the
DTN architecture) and in CGR, these are missing in The
ONE. As we deemed priorities enforcement an important,
if not essential, feature of CGR, we have introduced them
in The ONE. More precisely, instead of modifying the
existing code, we have introduced a new generator class
and a variant of the Epidemic router that is able to enforce
priorities. CGR and OCGR classes have been developed in
two variants, with and without priority support, the latter
for compatibility with standard traffic generators. The
Overbooking Management mechanism, which is related to
priorities, has also been implemented on The ONE side.

 CGR was designed for scheduled contacts and obviously
assumes that the list of contacts provided in the “contact
plan” are really going to happen; the problem here is that
although we can easily pass a contact plan to CGR, these
contacts are not enforced by The ONE. In fact, in The ONE
all contacts are random, deriving from the motion of nodes.
Although it is possible to use real traces instead of random

movements, any attempt to emulate the motion of space
assets and planets would be clearly impractical. Therefore,
we introduced the possibility of enforcing contacts in The
ONE on the basis of an external contact plan (in ION
format) as an alternative to the usual way based on node
mobility. Note that OCGR versions do not require (but are
compatible with) this feature, as they can rely on
discovered and predicted contacts only.

 In ION, each contact between two nodes has its own
transmission rate. In The ONE transmission rates are
associated to radio interfaces: one interface, one rate. It was
therefore necessary to modify The ONE code to enforce
different rates when contacts are dictated by an external
contact plan.

 In the space environment nodes can be very far away and
signal propagation time cannot be neglected; by contrast,
in The ONE there is little notion of anything related to real
transmission (from Bundle to Physical layer), as it is
considered irrelevant to overall routing evaluations.
Therefore, as “range” instructions in ION contact plans
cannot be enforced in ONE, they are ignored, by assuming
zero propagation delay instead.

 In CGR, bundles are routed and put in queues as soon as
generated, or received, as present and future contacts are
known (or just predicted in OCGR). In The ONE, bundles
are routed only on the spot, when there is an encounter
between two nodes. To accommodate the CGR behavior,
it was necessary to build into The ONE queues towards
proximate nodes, i.e., in practice the nodes to be
encountered in the contact plan. One queue is implemented
for each priority class (bulk, normal, expedited, as in [2]).
Interestingly, this mechanism has somewhat influenced the
development of the latest ION version (3.6.0, recently
released), where queues have been moved from the
convergence layer to the bundle layer, as here.

 In The ONE, transmission is normally half-duplex, i.e. a
node cannot transmit before having completed reception of
all messages from its peer; as this assumption could
potentially stress relay node buffers (obliging them to
inflate with all incoming messages before being deflated
by the transmission of the first outgoing messages), we
have made transmission full duplex in the new router
classes; this also makes the simulations more faithful to
real systems.

 A still missing feature to complete the support of
deterministic environments, useful for CGR testing, is the
implementation of deterministic message generators. This
is left to future versions.

V. THE CGR-JNI-MERGE PACKAGE

As a result of the implementation work described above, the
package “cgr-jni-Merge” (cgr-jni, merged version), has been
released as free software [22]. This package includes:

 Four CGR-related new router classes, namely
ContactGraphRouter (without priorities), PriorityContact-
GraphRouter, OpportunisticContactGraphRouter (without
priorities) and PriorityOpportunisticContactGraphRouter.

 The new “PriorityEpidemicRouter” class, to be used alone
or as a benchmark for priority versions of CGR routers.

4

 The “PriorityMessageEventGenerator” class for
generating messages with priorities.

 The class CPEventsReader, to enforce contacts provided in
an external contact plan (in the ION format).

 The classes PriorityMessageStatsReport and OCGR
MessageStatsReport to derive priority and OCGR stats.

 The CPEventLogReport class to log contacts opened and
closed by The One as a result of node movement.

 An independent Java program, called ContactPlanCreator
to convert the .txt file created by the CPEventLogReport
into an ION compliant contact plan.

Note that only the four classes related to CGR require
linkage with native C code (included in the package). All the
others are written in Java and some of them could be used
independently of CGR routers, such as those related to priorities.
The rationale for the ContactPlanCreator program is worth an
explanation. It could be used to pass to CGR contacts that are
actually derived from motion. In practice, this is possible by
running a simulation twice with the same random generator
seed. In the first run, the Epidemic router could be used and
opportunistic contacts logged; then, after converting the log file
into an ION contact plan thanks to the ContactPlanCreator, the
simulation could be repeated with CGR instead of Epidemic.
CGR would be passed the obtained contact plan, which would
“magically” predict the pseudorandom contacts, as the same
seed as before is used. This way, it is possible to compare
performance achievable with Epidemic with that which is
theoretically achievable by CGR. The former does not exploit
any state information, while the latter has a full knowledge. The
two cases, being extreme, could be used as opposite benchmarks
for other evaluations, where routers have only a limited
knowledge of future contacts.

VI. CONCLUSIONS AND FUTURE WORK

This paper is focused on the inclusion of CGR and its
opportunistic variant OCGR into The ONE, the most widely
adopted DTN simulator. Although the “cgr-jni-Merge” package
described in this paper has been primarily developed to this end,
it also adds a few auxiliary features that could be used
independently of CGR/OCGR routers. These extensions are: the
support of priorities (message generators with priorities,
Epidemic routing with priorities); the possibility of converting a
ONE log into an ION contact plan, and last but foremost, the
possibility of enforcing deterministic contacts provided in an
external contact plan. The authors hope that all these extensions,
released as free software, can be useful to both the opportunistic
and deterministic DTN research communities. To this end these
additions will be proposed to The ONE maintainers for possible
inclusion in the official version.

ACKNOWLEDGMENTS

Part of this research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

REFERENCES

[1] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, R. Durst, K. Scott,
and H. Weiss, “Delay-tolerant networking: an approach to interplanetary
Internet,” IEEE Commun. Mag, vol. 41, no. 6, June 2003, pp. 128-136.

[2] V. Cerf , A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H. Weiss
“Delay-Tolerant Networking Architecture”, Internet RFC 4838, Apr.
2007.

[3] K. Scott, S. Burleigh, “Bundle Protocol Specification”, Internet RFC
5050, Nov. 2007.

[4] C. Caini, H. Cruickshank, S. Farrell, M. Marchese, “Delay- and
Disruption-Tolerant Networking (DTN): An Alternative Solution for
Future Satellite Networking Applications”, Proceedings of IEEE, Vol. 99,
N. 11, pp.1980-1997, Nov. 2011.

[5] IETF DTN web site: https://datatracker.ietf.org/wg/dtn/about/

[6] Jain, K. Fall, and R. Patra, “Routing in a Delay Tolerant network”, in Proc.
of ACM SIGCOMM 2004, Portland, Aug/Sept. 2004, pp. 145-157.

[7] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, and K. Suzuki, “Contact graph
routing in DTN space networks: overview, enhancements and per-
formance,” IEEE Commun. Mag., vol. 53, no. 3, March 2015, pp. 38-46.

[8] R. J. D'Souza and Johny Jose, “Routing Approaches in Delay Tolerant
Networks: A Survey”, International Journal of Computer Applications
(0975 - 8887), Volume 1 – No. 17, 2010.

[9] Amin Vahdat and David Becker, “Epidemic routing for partially
connected ad hoc networks”, Technical Report CS-2000-06, Department
of Computer Science, Duke University, April 2000.

[10] A. Lindgren, A. Doria E. Davies, and S. Grasic, “Probabilistic Routing
Protocol for Intermittently Connected Networks”, Internet RFC 6693,
Aug. 2012.

[11] T. Spyropoulos, K Psounis, and C. S. Raghavendra, “Spray and wait: An
efficient routing scheme for intermittently connected mobile networks”,
in Proc. of 2005 ACM SIGCOMM workshop on Delay-tolerant
networking, WDTN’05, 2005, pp. 252-259.

[12] A. Balasubramanian, B. Levine, and A. Venkataramani, “Replication
routing in dtns: A resource allocation approach,” IEEE/ACM Trans. on
Netw., vol. 18, no. 2, pp. 596 –609, Apr. 2010.

[13] J. Burgess, B. Gallagher, D. Jensen, and B. Neil Levine., “MaxProp:
Routing for vehicle-based disruption-tolerant networks”, in Proc. of IEEE
INFOCOM, 2006, Barcelona, Spain, pp. 1-11.

[14] S. Burleigh, C. Caini, J.J. Messina, M. Rodolfi, Toward a Unified
Routing Framework for Delay-Tolerant Networking, in Proc. of IEEE
WiSEE 2016, Aachen, Germany, Sept. 2016, pp. 82 - 86, DOI:
10.1109/WiSEE.2016.7877309

[15] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN
Protocol Evaluation”, in Proceedings of the 2nd International Conference
on Simulation Tools and Techniques. New York, NY, USA: ICST, 2009.

[16] J. A. Fraire, P. Madoery, S. Burleigh, M. Feldmann, J. Finochietto, A.
Charif, N. Zergainoh, R. Velazco, “Assessing Contact Graph Routing
Performance and Reliability in Distributed Satellite Constellations”,
Journal of Computer Networks and Communications, in press.

[17] E.Birrane, S.Burleigh and N. Kasch, “Analysis of the contact graph
routing algorithm: Bounding interplanetary paths”, Acta Astronautica,
Vol. 75, pp. 108-119, June-July 2012

[18] CCSDS “Schedule-aware bundle routing”, CCSDS White Book, May
2017, work in progress.

[19] S. Burleigh, “Interplanetary overlay network design and operation
V3.3.1,” JPL D-48259, Jet Propulsion Laboratory, California Institute of
Technology, CA, May 2015. [Online]:
http://sourceforge.net/projects/ion-dtn/files/latest/download

[20] N. Bezirgiannidis, C. Caini,V. Tsaoussidis, “Analysis of contact graph
routing enhancements for DTN space”, International Journal of Sat.
Commun. and Networking, pp.695-709, No.34, On line Nov. 2015.

[21] The ONE web site: https://akeranen.github.io/the-one/

[22] cgr-jni-merge download site: https://github.com/alessandroberlati/cgr-
jni/tree/Merge

https://doi.org/10.1109/WiSEE.2016.7877309
https://doi.org/10.1109/WiSEE.2016.7877309
http://sourceforge.net/projects/ion-dtn/files/latest/download
https://akeranen.github.io/the-one/
https://github.com/alessandroberlati/cgr-jni/tree/Merge
https://github.com/alessandroberlati/cgr-jni/tree/Merge

